Reg. No.:		

Question Paper Code: 80123

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third/Fourth Semester

Electronics and Communication Engineering

EC 8491 — COMMUNICATION THEORY

(Common to Geoinformatics Engineering/ Computer and Communication Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A \rightarrow (10 \times 2 = 20 marks)

- 1. Why DSBFC-AM is bandwidth inefficient when compared with single sideband AM?
- 2. Mention any four advantages of having RF amplifier in AM receiver.
- 3. Differentiate narrowband from wideband FM.
- 4. Define transmission bandwidth.
- 5. What is the difference between random variable and random process?
- 6. When a random process is said to be strict sense or strictly stationary?
- 7. Give the formula for finding the Noise Figure.
- 8. Define equivalent noise temperature of a system.
- 9. What do you mean by sampling rate?
- 10. How the multiplexing of digital signals can be accomplished?

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	(i)	A 10 kW carrier wave is amplitude modulated at 80% depth of modulation by a sinusoidal modulating signal. Calculate the sideband power, total power and the transmission efficiency of the AM wave.	ie
		(ii)	Explain the working of Super heterodyne receiver with a neadiagram.	at 9)
	(b)	_	ain in detail the generation and demodulation of DSB-SC with le diagram.	
12.	(a)		ain the characteristics and features of demodulation of FM signs a neat diagram.	
			Or	
	(b)	(i)		5)
	(6)	(ii)		8)
13.	(a)	(i)	Describe the central limit theorem.	8)
		(ii)	Assuming X is a Gaussian random variable with $m = 0$ and $\sigma =$ find the probability density function of the random variab	1,
			\mathbf{Or}	
	(b)	Desc	ribe the properties of power spectral density. (1	3)
14.	(a)	Expl diag	ain pre-emphasis and de-emphasis in FM system with a ner ram. (1	at 3)
			Or	
	(b)	(i)	Discuss about any four properties of in-phase and quadratus components of a narrowband noise.	re (8)
		(ii)	Calculate the noise voltage at the input of a television RF amplificusing a device that has a 200Ω equivalent noise resistance at 300Ω input noise resistance. The bandwidth of the amplifier 6MHz, and the temperature is 17°C.	nd
15.	(a)	(i)	Explain the working of PWM with a neat sketch.	(9)
		(ii)	Write down the corrective measures to combat the effects	of (4)
			Or	(-)
	(b)	(i)	Write the advantages and some of the applications of PCM system	n. (5)
		(ii)		(8)

PART C — $(1 \times 15 = 15 \text{ marks})$

(Application/Design/Analysis/Evaluation/Creativity/Case study questions)

16. (a) (i) A random process X(t) is defined by

$$X(t) = A\cos(2\pi f_c t)$$

where A is a Gaussian-distributed random variable of zero mean and variance σ_A^2 . This random process is applied to an ideal integrator, producing the output.

$$Y(t) = \int_{0}^{t} X(\tau) d\tau$$

- (1) Determine the probability density function of the output Y(t) at a particular time t_k .
- (2) Determine whether or not Y(t) is stationary.
- (3) Determine whether or not Y(t) is ergodic. (12)
- (ii) Compare FM and PM system. (3)

Or

- (b) (i) A message signal $m(t) = \cos 2000\pi t + 2\cos 4000\pi t$ modulates the carrier $c(t) = 100\cos 2\pi f_c t$ where $f_c = 1MHz$ to produce the DSB signal m(t)c(t).
 - (1) Determine the expression for the upper sideband (USB) signal.
 - (2) Determine and sketch the spectrum of the USB signal.
 - (ii) Write a brief note on VSB. (5)

